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Strongly Convergent Green’s Function
Expansions for Rectangularly

Shielded Microstrip Lines

JOHN G. FIKIORIS, JOHN L. TSALAMENGAS, MEMBER, IEEE, AND GEORGE J. FIKIORIS

Abstract —The exact analytical treatment of the quasi-TEM mode in

various cross-sectional configurations of microstrip lines may he based

on Carleman-type singular integral eqnations (SIE’S). Their kernel is a

LapIacian Green’s function G with source point limited on the interface

separating the dielectric media. Strongly convergent expansions for G,
particularly suited for the subsequent solution of the SIE and for exact

field-point evaluations in rectangularly shielded microstrip configurations,

are developed. Extraction of the singular logarithmic term leads to rapidly

converging series expansions for the nonsingnlar part. The convergence of

certain of these series is fnrther improved when the field point lies also on

the interface or when the source point approaches the shielding boundaries.

In the first case, occurring typically in the kernel of integral equations, the

Watson transformation provides alternative and exponentially convergent

expansions for series converging slowly in the original G expressio~ in the

second case, image source terms are further extracted out of G, leading to

improved expansions for its remaining part. Numerical evaluations and

comparisons illuminating these points are included.

1. INTRODUCTION

I

N A SERIES of recent papers by the authors [1]-[3] an

exact analytical approach was developed for the treat-

ment of problems involving boundaries of different shapes.

The method was applied to shielded lines with round

conductors [3] and, in an accompanying paper [4], to

rectangularly shielded striplines and printed microstrip

lines. Crucial to this approach is the availability of strongly

and uniformly convergent eigenfunction expansions for the

(lreen’s function G of the configuration, which appears as

the kernel of the SIE and, subsequently, in the integrals

that serve to evaluate the field of any point inside the

guide. The SIE is of the Hilbert type for round conductors

[3] and of the Carleman type for strip ones [4]. Its solution

follows the Carleman–Vekua method, otherwise known as

the method of regularization by solving the dominant

equation [3], [4].

This paper is devoted to the development of various

analytic and strongly convergent expressions for the

Laplacian Green’s function G(x, y; x’, O) appropriate to a

rectangularly shielded microstrip line (shown in Fig. 1)
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Fig. 1 The shielded hne configuration with the lme source on the
dielectric interface,

with two dielectric sublayers cl, c~ divided by the surface

y = O, on which the source point of G lies (y’= O). The

special case c1 = ~~ was fully treated in [2] and finds

application in the exact treatment of the TEM mode in

rectangularly shielded lines with round conductors [3] or

with strip conductors (striplines) [4]. As explained in [2],

existing developments for this G are useless for exact

solutions of SIE and related field-point evaluations, owing

to their lack of convergence and uniformity of expression

when the field point approaches or moves past the source

point. The new expansions given in [2] have the singular

logarithmic term extracted out of G in closed form, along

with certain other simple harmonic terms, in a way that

helps to improve the convergence of the expansion of the

remaining, nonsingular part of G. The strong (exponential)

convergence of the resulting expression of G can be further
improved in particular situations ( y = -v’= O, source point

near the shielding walls) by special analytical techniques

(Watson transformation, extraction of image source terms)

and the improvement is, moreover, reflected in the stability

and quick convergence of the TEM field expressions that

result from the solution of the SIE [3], [4]. These two

features, namely, exact and quickly obtained solutions,

even in cases of close proximity of the conductors to the

walls, and exact field evaluations at any point inside the

guide, are, in the authors’ opinion, unique to this analytical

approach. Numerical methods (Galerkin, finite differences,

etc.) are adequate for quantities such as the characteristic

impedance, owing to the variational character of the basic

integral formula. Their accuracy is very much reduced in
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the case of close proximity or when the E and H fields are

evaluated at any point inside the guide, particularly near

sources and walls [5]–[8]. The G functions used in certain

of these, approaches [8] –[10] converge slowly (actually con-

ditionally) and are inadequate in the aforementioned situa-

tions.

In the case of printed microstrip lines, ~1# c~, no pure

TEM mode can propagate [5]–[9]. However, when the

guide dimensions are much smaller than the wavelength

(a, bl – bz < A) the E,, Hz components of the principal

hybrid mode are negligible compared with the transverse

ones, and the latter ean be well approximated by those of

the so-called quasi-TEM mode; these then follow from

Laplace’s, rather than Hehnholtz’s, equation. The analyti-

cal treatment of this case’ leads again to a Carleman-type

integral equation for the surface charge distribution U(X)

(C/m2) on the strip having as kernel the Green’s function

of the stm”cture shown in Fig, 1; this function satisfies the

following boundary value problem (BVP):

G(x, y;x’,O)=G1(x, y;x’) in Ogy~bl

G(x, y;x’,0)=G2(x, y;x’) inb2~y~0 (1)

(- )a2 82
— G(x, y;x’,O) =-2m3(x-x’)6(y),

8X2 + dy*

G1(O, y;x’) =G2(0, y;x’) =Gl(a, y;x’) =Gz(a, y;x’)

= G2(x, b2; X’)

=G1(x, bl; x’)=O (3)

of G the singular logarithmic term G P defined in (6) and

certain additional simple harmonic terms that help im-

prove the uniform convergence of the remaining nonsingu-

lar part of G. The latter is expanded into appropriate

harmonic series S’:) and 5“) (j Z=1,2,3, 4) pertaining to

regions 1 (O ~ y ~ bl) and 2 ( b2 ~ y ~ O), respectively, and

connected to each other through the boundary conditions

(3)-(5). These series exhibit an exponential rate of conver-

gence everywhere except in two special situations. The first

is when both the field and the source point are located

very near the shielding walls. In this case the influence of

the nearby image source terms becomes predominant and

destroys the convergence of the series S“), S“) [2], [3].

Extraction of corresponding logarithmic terms restores the

convergence of the remaining series expansions in the

second form of G thus obtained. This evaluation is carried

out in Section 111. It is very useful whenever the strip

conductor approaches any of the four walls. The second

situation is when y = O. Here, the field point lies, also, on

the dielectric interface, a situation that comes up in the

formulation of a SIE for the shielded rnicrostrip. As will be

seen— and has already been observed in other situations

[l]–the series S~’) (k= 1, 2) in tlhe first form of G (and

the corresponding ones in its second form) lose their

exponential rate of convergence, exhibiting a slow uniform

convergence of the order 1/m 2, where m is the summation

index. This slows down considerably the evaluation of G

at such points and the solution of the SIE for @crostrips.

Application of Watson’s transformation on S~~) in a way

similar to [1] yields equivalent” series that converge ex-

ponentially even when y = O. This third form of G, devel-

oped in Section IV, improves drasl,ically the solution of the

microstrip SIE [4]. The numeric+ results of Section V

illustrate the characteristics of the various forms of G

outlined above.

G1(x, O+; X’) = G2(x,0-; X’) O~x,x’~a (4) II, THE ORIGINAL C FUNCTION

aG1

-1

aG2

61ay ~=o+ -1‘(2 ay ~=o.

OSx, x’Sa. (5)

With this definition of G the electrostatic potential of a

line charge q (C/m) at (x’,0) is ~(x, y) = qG\n(cl + e2).

Also, in the absence of any shielding walls,

G= Gf’(x, y;x’) = – ;ka[(x-x’)2+ y2]; +(X, Y)

= _ qln[(x–x’)2+ y2]

27r(61+c2) “
(6)

The solution of BVP (l)–(5) will be obtained in three

forms, depending on the relative position of the field and

source points, their proximity to the shielding walls, and

whether the field point is near the separat~g surface y = O.

Thus, as in [2], in the next section we mltially extract out

As outlined in the previous section and by analogy with

[2] we can write down for G the following expressions:

Gk(x, y;x’)=Gp(x, y;x’)+G; (x, y;x’), k=l,2

(7)

which describe the solution of the inhomogeneous equa-
tion (2) in regions 1 ‘and 2 in terms of its partial and

complementary solutions G P and G:. The first, given in

(6), follows from the well-known electrostatic solution of a

line source q at the point x’, y’ in a medium c1 in y >0

separated from a medium t z in ,y ~ O in the limit y’= O;

at this limit G P gets the unified form (6) valid in both
y ~ O and y ~ O and accounts fully ‘for the singular behav-

ior of G near the source point. The complementary solu-

tion G: is nonsingular throughciut the region O ~ x < a,

bzs y ~ bl and, as in [2], after e~tracting out of it certain

simple harmonic terms, may be expanded in four sine–sinh

Fourier series fl}~)(x, y) (j =1,2,3,4) in each region k =1
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and k = 2:

G;(x; ~, X’) =

q~)(x,y)=

Sy(x,y) =

S-y)(x, y) =

Sy)(x,- y)=

+((a-x)(b, -y)lnx’

+x( b~–y)ln(a–x’)

+~(a–x)yln(x’’+b~)

+~xyln[(a -x’) ’+b~])

4

The role of the extracted simple harmonic terms in (8)

may be appreciated when the boundary conditions (3)–(5)

are applied. For instance the third and fourth of the

conditions in (3), G~(a, y; x’) = O (k =1,2), lead to the

relations
m 7ra m 77y

sjl~)’a, y) = ~ a~~sinh ~ sin ~\
m=l I&

b;– y
—— ~ln[(a– x’)’+ y’]-~ In(a–x’)

k

— ~ln[(a–x’)’+b~], yin[O, bk].
k

(10)

The series on the left represents the Fourier-sine expan-

sion of the simple function of y on the right, which

vanishes at the end points y = O and y = bL of the interval.

This fact improves the convergence of the series Sj~j( a, y)

and, as is soon to be seen, makes the convergence of

S~k ‘(x, y) uniform, of the order at least l/m3, ensuring a

convergence for the derivatives of GL (i.e., of the field) of

m 7X m my 2
a~~) sin — sinh ———

[
<—exp — ;(21bkl- Iyl)] +

a a m

order at least l/m 2. Analogous conclusions can be drawn

for the series S~k)(x, y), Sjk)(x, y). The simple harmonic

terms act as smoothing functions improving the conver-

gence of the individual series, a property discussed further

in [1] –[3]. In addition, they do not complicate the applica-

tion of condition (4) at y = O, as will be verified below.

The expansion coefficients a~fl follow from (10) and the

orthogonalit y of {sin ( m ~y/bk ) } in [0, b~ ]. The integra-

tions of the right-hand side are the same as those carried

out in [2] and yield

dn(z)=Re {exp(mz)[E1(mz –im~)– E1(mz)]

+exp(–m2)[E1( –m2–imm)– E1(–m2)]}

1/\ Z-iT14 +0(1/m3) (12)

El(z) being the exponential integral function [11], whose

numerical evaluation and asymptotic behavior are dis-

cussed in [1]–[3] and [11]. Also, Z is the complex conjugate

of z.

In a similar way the remaining boundary conditions in

(3): G~(O, y; x’) = G~(x, bk; x’) = O provide relations from
which the coefficients a~~), aj~) are obtained as follows:

a

+ dw,

[

:(- b,+jx’) 1}
k)_ ( 1/(

m 7ra
a$m — – d., – & m r sinh —

k )bk

(13)

(14)

The results of (1 1)–(14), which are identical to those in

[2] with y’= O, determine completely the series S’l, Sq, Sd.

Their convergence follows from the behavior of their gen-

eral terms as m ~ co and is the same as in the correspond-

ing series of [2] with y’= O (see also [3] and (12)). The final

results are

2a2

–[
‘(l%-IY I)]~3m3 exp — a

. b:–xt’ ~ b~–(a–x’)2 (15a)

(b:+x’)’ ‘(-1) [b:+(a -x’)’]’

+ 0(1/’’??2)

m 7ry m TX 2b:
k) in —LY$ms sinh — —

[ 1
-~(a-x) . 1

(a-x’)’-b~

bk bk < 773m3 ‘Xp (a - x)’
-(-l)m

[(a-x’) 2+ b:]2+0(1/m)

m 7Ty
a~~) sin —

bk
sinh

(15b)

(15C)
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The exponential rate of convergence is made obvious by

these relations and is further strengthened by the factors

I/m and l/rn3. This rate is lost for the series S\~) (or

S~~)) when xs a (or xs O) and for the series S{~) when

IYI = lb~l, but the convergence remains uniform, of the
order l/m3. Only when both x and x’ approach a (or O),

i.e., when both the field and source points approach very

near the shielding wall x = a (or x = O), the series S\~) (or

S~~) ) fail to converge. This, as already mentioned, is due to

the strong influence of the nearby image source and can be

remedied by extracting out of G~ further logarithmic terms,

a procedure carried out in Section III below.

It remains to determine the coefficients a~fi (k= 1, 2) by

applying the last boundary conditions (4) and (5). Sub-

stituting (6)–(9) in (4) leads directly to

(16)

while invoking (5), the fact that [ d G P/dy ] ~= ~ = O and the

orthogonality of {sin (mmx/a)} (m =1,2, . . . ), we end up

with the relations

——

{

A ~(~)2[(-l)m+’g( a-x’) +g(x’)]
BW

‘:[2,2’-1)’+1:1i((-1)mdq[i(-a+x’)l

m~bl m ~bz
B.= clcoth — – c2coth —

a a

g(x)=%ln(x2+b~) –~ln(x2+b~)
1 2

()

c1
— g lnlxl

~–b2

(1) are given in (13).where al~

(17)

(18)

(19)

Inspection of (17) reveals that the series S2 defined in

(9b) exhibits an exponential convergence when the ob-
servation point is not near the dielectric interface. How-

ever, when y -O, as pointed out previously, the general

term of S2 loses its exponential decay, behaving asymptoti-

cally only as ( – l)m/m 2. This defect will be remedied in

Section IV by applying the transformation of Watson.

In this section we have derived in effect a unified

expression for the G function of the structure in separated

form, characterized by a very rapid rate of convergence

everywhere except in the cases noted above.

III. THE SECOND FORM OF mm G FUNCTION

As discussed previously in connection with (15b), (15c)

the series S3, St fail to converge when x’s a or x’ ~ O,

respectively. This is attributed to the influence of the

nearby image logarithmic source when the observation

point (x’, O) approaches the shielding walls, whose nearly

singular behavior destroys the convergence of the series.

This argument suggests, also, the way to remedy the situa-

tion by extracting out of G; further logarithmic terms,

corresponding to line sources at (2a – x’, O) and ( – x’, O):

G~(x, y;x’)=~ln [(x+x’-2a)2+y2]

+ ~ln[(x +X’)2+ J?2]

—~((a-x)(b, --y)

.ln(2a– x’)+x(b~– y)ln(a +x’)

+~(a–x)y ln[(2a-x’)2+b~]

+~ln[(a+x’)z+b~]}

4

+ ~ S’qx,y), k=l,2. (20)
,=1

The series S’(~) (x, y) (j =1,2,3,4) are the same as

S(~)(i, y) in (9) with new coefficients a~~k) in place of
‘k~$m).

Applying the boundary conditions at x = a, x = O, y =

bk as before, we obtain first expressions for the coefficients

aj~k) for j =1,3,4:

t(k) =
alm

~mmb ,(-2Tsin(~x’)m n sinh —
a

k

“exf’-:’bk’)-d+--bk+il’l
+d.

[
:(- bk-ix’) 1

[ abk -i:(x’–2a)+d~ –: 1)(21)
a

1
/(k) =

~3m

[ 1~wadm ~(–a’-x’) ;

m T sinh — k

bk

z(k) =
~4m

‘ m~adm[i(x’-”aim v sinh —
bk

(22)
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For large m use of (12) shows that the general term of of extracting out of G the image source has been applied

s:t~l (~=1,3,4) behaves as follows: to scattering problems as well [12], [13].

11’’’)%%4?11
Finally, application of the boundary conditions (4),

(5) at y=O provide, as previously, the coefficients aj~)

(k=l,2):
2

[
<—exp –

m
%wkl- IM)]a.

i

.-

2a2

–[
‘(WIN)]~3m3 exp — ~

b~–(x’–2a)2

[b:+(x’-2a)F-l)m =-[ ( 1
1 2 a2

— [(-l)mg(a +x’) -g(2a -x’)]
B. ~ mn-

h?–(Y’+ 11)2 I
\

-K L-- -J

r.. ,
912+ 0(1/m)l (23a) - ~ (-1) ’,,a{g)

“fi)sin(%dsinh(a
2b:

<—

[
~3m3 exp — ~(a-x)

I ‘$/’x’-2al

1
-(-l)m

(a+x’)’-b~

(a+x’)2
[(a+ X’)2+bl]2 +0(1/m) “(y,21( ]

1

2“
(24)

k

(23b)
+%

/

ajfi)sin(%)sinh[~( a-x)]
It is concluded from (24) that the general term of

S~(L)(x, y) decays exponentially as m ~ m as long as the

observation point is not located near the dielectric inter-

2b:

()

m 77x 1
face. However, when y = O the rate of convergence of this

-=— exp – —
Ib’1 “ (x’-2a)2

-(-1)’” series is of the order ( —1) ‘/m 2. The same behavior was
773m3 noticed previously for the series S~A)(x, y) defined by (9b)

and (17). By applying the method of Watson in the next

(x’-2a)2-bj , +O(l,m) section a drastic improvement is achieved for both these

[(

(23c) series.

x’–2a)2+b~ 1
Now, obviously, as x’ approaches either a or O, the IV. APPLICATION OF WATSON’S METHOD: THE. .

series S<, SJ coniinue to converge exponentially, in con-

trast to the preceding expansions S3, S4, given in (9) and

(15). When the observation point approaches the shielding

walls (Iyl = Ibkl for S{(k), x = a for S;, and x = O for S~)

the exponential decay is lost, but the series converge

uniformly, at least as l/m 3. In any case when (x, y)

approaches the shielding walls the result is known, G a O,

while when it moves very near (x’, O) the dominant loga-

rithmic terms of the expansions account for the rapid

change (singular behavior) of G; the remaining terms

(simple harmonic and series) represent small correction

and analytic terms which account for the influence on G of

the dielectric interface and the charge distribution on the

walls. When both x and x’ are near a (or O) and y is near

O, the two logarithmic terms (source and its nearby image)

of the second expansion account for the dominant behav-

ior of G, leaving the strong convergence of the series &’ or

S~ undisturbed. Let us add at this point that the technique

THIRD G EXPRESSION

A detailed examination of the expressions (9b) and (17)

for S~k) and (24) for sj(k) reveals that the 10SS of the

exponential rate of convergence of these series as y -+ O is

due to terms of the form

z sinh [:( b’-y)]

()

m7r
a B. sinh —bk

a

(il)m

(-)

m77 2

(+al)m
,h(x’),

(1=1,2)

appearing on the right-hand side of (17) and (24), respec-

tively, while the remaining terms of (17) and (24) decay
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A3 Contour r

~P’

Al

Fig. 2. Triangular contour rforthe application of Watson's method.

exponentially’ with increasing m. So we concentrate on

series of the form

k=l,2; 1=1,2; q=0,1,2,... (25)

and seek ways to improve their convergence for small y.

To this end we may invoke the well-known Watson method

[1], [2]. As a first step in the application of this technique

we form the following contour integrals:

\ sin(~)

a) At p= m (m =1,2, . . . ) with a sum of residues

b) At p = iqa\lbll (q =1,2, co“ ]1 with residue

Res f~,+)(p = iqa/lb[[)

where 8(x ) = 1 for x = integer, 8(x) = O otherwise.

correct evaluation of these residues requires special

when (b~/b,)q is an integer.

For q = O the pole is located at v = O with residue:

c) At the roots of the transcendental equation

[Clcoth(wcoth(+)lsinh

1391

(27)

(28)

The

care

(29)

(30)

(26)

along the closed triangular contour r in the p plane shown

in Fig. 2. The corners Al, A ~ are symmetrical to A2 with which fall on the positive imaginary axis p = ip” (p”> O),
respect to the real and imaginary axes, respectively, the at points ~)~ = ~ ( > 0) (~ =1,2, . . . ), It is shorn in the

side AIA ~ cuts- the real axis at P’= m + 1/2, while A 2A 3 Appendix thata~lthezerosof (20) are purely imaginary.

cuts the imaginary axis at p“ = na/bl (n =1,2, . . “). ‘hen The corresponding residues are
q = O the integrmd f~l+ } (p) has a simple pole at p = o
and A 3AI bypasses this point around a small cir-

cumference of radius p. When q =1,2, . . . the pole inside

r is located at p = ip” = iqa/lbll and A3AI passes straight

over p = O.

~s~~~),l~sin(~u~]

Obviously f~l= }(p) is an odd function of P, so the Res f~l~ } (v = iv ) = L \ b, “1]

integral over A ~Al vanishes. It is further shown in the
Appendix that for all p on AIA2 and A2A, the integrand

f117 ‘(P) vanishes as these sides recede, independently, to

“ [(~~-(~~]~Husin(~u;)’

co, i.e., as p’= m +1/2 ~ce and as p“= na/bl~ m. This q=o,l,2, . . .
means that at these limits the sum of residues of all poles

of the integrand, enclosed in r, is O. The poles and their

( )[

clbl c2b2
Hn=sinh ~u: —–

corresponding residues in 17 are as follows. 1 sin2 u; sinz (u~bz/bl) 1
(31)

(32)
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with pn = ( a /mbl) u:, where the positive values 4’ are determined in the Appendix. It follows that the initial series Sk;.

divided by n, can be expressed as the negative sum of the residue (28) when q =1,2 . . . (or half of the residue (29) when

q = O) plus the infinite series of the residues (31). The whole new expressions for S~k) in (9b), (17) and S;(k) in (24). thus

obtained, are given below:

.[xg(a- x’)- (x-a) g(x’)] -2b~ ~ sin
[

:( bL-y)

~=1 1

where a~~~is given in (13).

.[g(a+x’).x -g(2a-x’)(x -a)]+2b~ ~ sin
nz=l

[:(~k-~)][sinh(:.;)g(a+x)

(33)

1 (34)
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TABLE I
x’=18; L)= DOMINANT TERM= –~[ln(x– x’]? + P2]

——

17 6 -0.8047190 :2.436690

17

19

19

19

19
, . . ..__.._ L—.. .

17
—.

17 8 -0 8047190 2.319442

17

I “--
—-

17.5 0 i.liiOtl-- A–-–--””——— “–”-62 3.02998 60, 3.030012

i7 8 0 “3.94462 , 67 3.94459 68 ;“3.944620

L17_9~ ~--~ 3_3025 68 5.33021 68 ! 5.330249

! 17.99 0 6,93953 :68’6 .93950 ‘ 69 6.939529

b.oi-o 633945~69’6,93942‘- “----69 6.939454
_–L._ . . . . . ..–-..

a~:05 “O 5,32987 I 69 5.32984 ;-69i_532987i

!~E.”i–O 3 94311 :67’3 .94308 67 3,943106

6:3.944591 7 1,609438 2 i~5 l:;-”

6 ; 5.330219 8 2.995732 2.334487

9 ; 6,939500 7 4.605170 “2,334330

6 :6,939424 7 4.605170 2.3342 ;4---

“6 ; 5.329841 “7 2“.995732” 2.334109
_.—

1— .-
8-“ 3 :94i076

i 18 5 0 “3.02622 65 302619 62 3.02i224 “—6; 3~OZ6192
~,-y.=l,.: :- ‘--’ “ --;- ;,g;z:;::~=.

’60 2,33308 60”-2,333110 6 Z 333077 7 0“ 2,333077 -
,,

T,4BLE II

x’= 29.9; D = DOMINANT ‘Ikws= – ~ln[(x – x’)2 + y2]

+~ln[(x+ x’–2a)2 + y2]

, Y M % GB % C6 o
——

1 0,4520517 1.282328 3,699040 1,,280485

10 0,7427881 1 282234 1 799159 ~
29 85 u 05 7(I

1.281124 1,282475
1,198505 1.281547 1 292053 1 281352

~
1 0.7758923 1 416502 4,028069 1,414696

10 1 001345 1,416429 2,063884 1.415284 1,416607
<9 9U 0 05 70’ 1 333782 1 415850 1,437069 , ~l~fi?>. ,....”—

1 0,4065871 0,9046559 3,669789 0,8028990 I

1[) 0.5668899 U 8046034 1 637953 0.8034310 0,8047190
<9 95 U,U5 7U 0,7663971J 0 8041354 U 8514662 ,, .I, ?,?a,. ..... .

1 u,43U4U06 U.8U46673 3.717696 II,80286U6

111 u,6U/4113[1 u ,13U44452 1,682531 u,8U3273U U,804719U

29 95 -U U5 70 0 7467897 U 8041322 0 8379124 0,8U39319

1 u,7Y92161 1,416513 4, U70663 1 414656

lu 1,u36353 1 416292 2.098527 1.415147 1,4166U7
29 ,9U -u 05 7U 1.326294 1.415847 1,431185 1 415620

1 4748963 1.282339 3,7397WI 1, Z8U444

10 773U518 1 282115 1.827993 1 281005 1 282475
2Y 85 -0 05 70 1 195549 1 281544 1.289528 1 281350

1 u 7622708 1 609313 4.18U658 1 607185

IU 0,9772221 1,609237 2 179648 1 607889 1,609438

29,85 U 70 1.470025 1 608638 1 619108 1 608335

1 1.664737 2.397796 5 090760 2.395661

10 1 836793 2 397735 3.048791 2,396337 7 39789

2Y.88 u 71J 2 239570 2 397243 Z.413UYU 2.396875

1 2,353276 3,044432 5.781838 3,042295

10 Z 511018 3,044376 3 725934 3.042961 3.044522

2Y. L39 o ?[1 2,882487 3,043922 3,0623U0 3 043535

1 i 344060 2.944365 5 777693 2 942224

10 2,473157 2.944319 3,693485 2,942870 2.944439

29,’41 U lU 2,780324 2.943943 2 969010 2,943523

1 1 646304, 2,197159 5.082469 2.195U16

lU 1,76107U 2,197118 2.983888 2.195651 2,19/225

29.92 U 70 2.u35342 2.196782 2,226252 2 196348

1 0,7161889 1.098571 4 159932 1.096423

lU 0 7879365 1,098546 2,017327 1,097026 1 098612

29 95 u 70 0 9611400 1.098333 1 147468 1,097877

1 0.370500 0.6190147 3.819282 0 6168625

10 0 4135332 0,6189996 1,646553 0.6174423 U.6190392

29.97 U 7U 0,5179179 0.6188710 0 6894942 0.6184174

1 0.1099689 0 2006626 3.563779 c 19850[6
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10 0 1243207 0 200657s 1.360288 0.lW0626 u 2006707

29.99 0 70 0 1591830 0 2006146 0 3041360 U.2001826
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In both S~kl and S;(k) the slowly converging series over

m, when Iy I is small or O, are substituted by exponentially

converging series over n. Indeed, the dependence on y

appears now in sine instead of sinh functions, while

sinh ( u;x,/bl) and sinh (u~(a – x)/bl) in the numerator

are divided by sinh ( u~a /bl), thus securing an exponential

decay of the series. Even the convergence rate of the series

over q is now improved. On the interface, for y = O, both

(33) and (34) are simplified considerably.

V. NUMERICAL RESULTS AND CONCLUSIONS

Four expressions for G~(x, y; x’) (k= 1, 2) have been

obtained. The first, denoted from here on as G., is defined

in (7)–(9), (1 1)–(14), and (17) and converges rapidly when

the source point (x’, O) is not very near the shielding walls

x = O, a. The second, G8, defined in (7), (9), (20)–(22), and

(24), takes into account the influence of the image sources

in closed form and converges rapidly even when x‘ is near

O or a. The third and fourth GY,Ga, obtained via the

transformation of Watson, provide alternative and rapidly

converging series for the sums S\k) and S{(k) of G. and

G8, respectively, when the field point (x, y) is near the

interface y = O. The remaining parts of G., Gp remain the

same in the expressions GY,Ga. The equations defining

these new expressions for Sj~) and S;(k) are (33) and (34),

respectively.

In the following tables values of G from all four expres-

sions are given for various positions of the source and field

points. The geometry of the shielded line is kept the same

in all tables: a == 30, bl =16, bz = – 8, c1=1, c1 =10. In

Table I the source point is away from the walls, x’= 18,

while the field point moves around it. Apart from the four

values of G we provide in each case the approximate

number M of terms, used in the basic summations over m
‘k) S~(’”) in GY, Ga), at which the(over n for the sums S’z ,

final value of G settles to the indicated accuracy, thus

providing a clear criterion of the rate of convergence. We

also provide the value of the dominant term D, in this case

D = – ~ in [(.x – X’)2 + y 2], and its difference (the re-

mainder) from Go. This last value, remaining practically

constant for all values of (x, y) near (x’, O) brings to light

the dominant behavior of the singular term and the impor-

tance of extracting it out of G in closed form. In all cases

the clear superiority of the expansions GY,G& over G., Gp is

obvious, particularly, when the field point is close to the

interface (y G O). Only for large y do the four expansions

become equivalent from the standpoint of the rate of

convergence.

In Table II the source point is placed near the wall
x = a, X’ = 29.9, while (x, y) moves near and around it.

Now as dominant for GP, G8 we consider the sum of terms

D = –~ln[(x – X’)2 + y2]+~ln[(x + x’–2a)2 + y2] of

the source and its nearby image. The clear superiority of

GB, G8 over G., Gy, respectively, is again obvious as well as

the insignificant contribution of all terms beyond the two

dominant ones in the value of G@,G8. To show this we

provide three values of G in each case, corresponding to

the number of terms M kept in the main series summa-

tions over m, as explained previously, namely, M =1, 10,

and 70. Even with M = 1 (only the first term of the series)

G6, G8 have settled to their final values within a three or

four digit accuracy. These values are of course very near

the dominant term. So, the remaining terms of the series

affect only a small residual part of Gp, G8. It is interesting

to notice that as M increases GP and G8 approach the

“final” value from above and below, respectively, being

always very close to it. On the contrary, G., GY start from

very different values and very slowly tend to the correct

value (from below and above, respectively), but it would

require very large values of M indeed to get an acceptable

approximation, certainly M >>70 for the example of Table

II. This is a further demonstration of the importance of

extracting out of G the dominant terms in closed form,

particularly for regions near or around singular points or

points of rapid change of the function.

Finally, we may state, that the best expression for G is

G8. It is at least equivalent to the other three in all regions

with x’ away from O and a and y away from O and

definitely better than the others when either ys O or

x‘ E O or a. In particular, for microstrip problems in which

the strip comes close to the walls x = O or a it has been

shown [4] that Ga is definitely superior.

APPENDIX

We start with the determination of the roots of the

transcendental equation (30). It is obvious that they do not

coincide with the roots of the factor sinh (pnb~ /a ) be-

cause these values reduce (30) to the impossible relation

+- c~ = O (k =1.2). This, also, justifies passing the side

A2A3 of the contour r through the point p“ = na/bl
(n =1,2,. - .). Writing now

prbl/a = u pvbl/a = –fiu, /3=- b2/bl>0

(Al)

we turn to the roots of the other factor

D(u) =clcoth u+c2coth(~u) =0. (A2)

With u = u’+ iu” and coth(u’+ iu”) = (1 + i tanhu’.

tan u” )/(tanh u’ + i tan u” ), this relation reduces to

tanhu’(1 +tanz u“)
D(u) =E~

tanhz u’ + tan2 u”

tanh(/?u’)[l +tan2(~u”)]

+‘2 tanh2(~u’) +tan2(~u”)

[

tan u“(tanh2u’- 1)
+i c1

tanh2 u’ + tan2 u”

+ ~, tan2(/3u’’) [tanhz(~u’)-l] I (A3)
- tanhz(~u’) +tan2(~u”) “

Now tanh u’ and tanh( /3u’) have the same sign, since

~ > 0; also, they both vary between – 1 and 1. Thus the

real part of D(u) is zero only for u’= O. Therefore, u = iu”

and either (A2) or (A3) reduces to

cl cot u“ = –c*cot(pU”). (A4)



FIKIORrS et a[.: STRONGLY CONVERGENT GREEN’S FUNCTION EXPANSIONS

+ U’J

!3=+: $31T/2, d::3iT-~, &u; +4Tl,..., u’;, d;_3+311

Fig. 3. The roots of the transcendental equation
– b2/bl =1/3 and /3 =1/4.

(A4) for /3=

Since D(u) is odd we are only interested in the positive

roots of (A4), which produce poles of ~~1~} (p) inside 17.

Such roots are easy to determine numerically to any de-

sired accuracy, In particular for ~ = – b2/bl = p or I/p,

where p is an integer, only the first p/2 (p even) or

(p – 1)/2 (p odd) roots require numerical determination,

the rest following by adding multiples of T. For instance,

for ~ = p =1, (A4) can be satisfied only for cot u” = O,

i.e., for u“ = (2n –l)n/2 (n =1,2, c-0 ) or p“=p~=

(2n – l)a/2b1. For ~ = 1/3, after determining numerically

the root u;’, there follows uj’ = 3n/2, while u; = 3n – u{’.

The rest of the roots follow by adding multiples of 37r to

each of the first three, as illustrated in Fig. 3. On the same

figure the case ~ =1/4 is also illustrated; after determin-

ing numerically u;, uj’ there follows u: = 4n — u:, U( =

4m – u{’ and the remaining roots are obtained by adding

multiples of 4n to the first four. Similar simplifications for

the solution of (A2) can be found in the more general case

when B is the ratio of any two integers.

Finally, there remains to show that the integrand

fil~ ‘O) in (26)vanishesfor all P on ~1~2 and ~2~3 as

these sides recede, independently, to cc. Using the relation

[11]

we deduce that, for all values of u”, lcoth UI -1 as u’ ~

+ co. Taking also into account that for k =1 both y >0

and bl–y~O, while fork= 2 both y~Oandb2 -y&0,

it follows that as p’= m + ~ a + co (with p, on AIA2):

[(-Ip’’l?r(l- x/a)
exp

– lp’’lwx/a }1–I@
lfL!wol -

[()
p’++cc r 2

– (p’z+~’” + :2
m]

, (’1+’2)
a

,,-&o. (AQ

When p“ = rta/bl - + m (with p on A2A3) we first ob-

serve from (Al) that u” = n T and tan u” = O. Therefore

from (A3):

D(u) = ~lcothu’+ t2coth(/3u’)B– ic2F (A7)

1395

where B, F are positive quantities. Again coth u’ and

coth( /3u’) have the same sign, since ~ >0, and lcoth u’1 >

1, Icoth( ~u’) I z 1. It follows that

Therefore:

exp
[(

– K“T(l – x/a) }1-IP’I;IYI

If/lT}l <
– p“Tx/,L!

prt++$e

[(1

: 2(J2 +P,,, w 2

)+( )]

._

bl 61

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

.fJ=mo (A8)
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