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Strongly Convergent Green’s Function

Expansions for Rectangularly
Shielded Microstrip Lines

JOHN G. FIKIORIS, JOHN L. TSALAMENGAS, MEMBER, IEEE, AND GEORGE J. FIKIORIS

Abstract —The exact analytical treatment of the quasi-TEM mode in
various cross-sectional configurations of microstrip lines may be based
on Carleman-type singular integral equations (SIE’s). Their kernel is a
Laplacian Green’s function G with source point limited on the interface
separating the dielectric media. Strongly convergent expansions for G,
particularly suited for the subsequent solution of the SIE and for exact
field-point evaluations in rectangularly shielded microstrip configurations,
are developed. Extraction of the singular logarithmic term leads to rapidly
converging series expansions for the nonsingular part. The convergence of
certain of these series is further improved when the field point lies also on
the interface or when the source point approaches the shielding boundaries.
In the first case, occurring typically in the kernel of integral equations, the
Watson transformation provides alternative and exponentially convergent
expansions for series converging slowly in the original G expression; in the
second case, image source terms are further extracted out of G, leading to
improved expansions for its remaining part. Numerical evaluations and
comparisons illuminating these points are included.

]J. INTRODUCTION

N A SERIES of recent papers by the authors [1]-[{3] an

exact analytical approach was developed for the treat-
ment of problems involving boundaries of different shapes.
The method was applied to shielded lines with round
conductors [3] and, in an accompanying paper [4], to
rectangularly shielded striplines and printed microstrip
lines. Crucial to this approach is the availability of strongly
and uniformly convergent eigenfunction expansions for the
Green’s function G of the configuration, which appears as
the kernel of the SIE and, subsequently, in the integrals
that serve to evaluate the field of any point inside the
guide. The SIE is of the Hilbert type for round conductors
[3] and of the Carleman type for strip ones [4]. Its solution
follows the Carleman-Vekua method, otherwise known as
the method of regularization by solving the dominant
equation {3], [4].

This paper is devoted to the development of various
analytic and strongly convergent expressions for the
Laplacian Green’s function G(x, y; x’,0) appropriate to a
rectangularly shielded microstrip line (shown in Fig. 1)
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Fig. 1 The shielded hne configuration with the line source on the

dielectric interface.

with two dielectric sublayers ¢, ¢, divided by the surface
y =0, on which the source point of G lies (y'=0). The
special case ¢ =¢, was fully treated in [2] and finds
application in the exact treatment of the TEM mode in
rectangularly shielded lines with round conductors [3] or
with strip conductors (striplines) [4]. As explained in [2],
existing developments for this G are useless for exact
solutions of SIE and related field-point evaluations, owing
to their lack of convergence and uniformity of expression
when the field point approaches or moves past the source
point. The new expansions given in [2] have the singular
logarithmic term extracted out of G in closed form, along
with certain other simple harmonic terms, in a way that
helps to improve the convergence of the expansion of the
remaining, nonsingular part of G. The strong (exponential)
convergence of the resulting expression of G can be further
improved in particular situations (y = y’ =0, source point
near the shielding walls) by special analytical techniques
(Watson transformation, extraction of image source terms)
and the improvement is, moreover, reflected in the stability
and quick convergence of the TEM field expressions that
result from the solution of the SIE [3], [4]. These two
features, namely, exact and quickly obtained solutions,
even in cases of close proximity of the conductors to the
walls, and exact field evaluations at any point inside the
guide, are, in the authors’ opinion, unique to this analytical
approach. Numerical methods (Galerkin, finite differences,
etc.) are adequate for quantities such as the characteristic
impedance, owing to the variational character of the basic
integral formula. Their accuracy is very much reduced in
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the case of close proximity or when the E and H fields are
evaluated at any point inside the guide, particularly near
sources and walls [5]-[8]. The G functions used in certain
of these approaches {8]-[10] converge slowly (actually con-
ditionally) and are inadequate in the aforementioned situa-
tions.

In the case of printed microstrip lines, €, # ¢,, no pure
TEM mode can propagate [5]-[9]. However, when the
guide dimensions are much smaller than the wavelength
(a,b,— b, << A) the E,, H, components of the principal
hybrid mode are negligible compared with the transverse
ones, and the latter can be well approximated by those of
the so-called quasi-TEM mode; these then follow from
Laplace’s, rather than Helmholtz’s, equation. The analyti-
cal treatment of this case leads again to a Carleman-type
integral equation for the surface charge distribution o(x)
(C/m?) on the strip having as kernel the Green’s function
of the structure shown in Fig,. 1; this function satisfies the
following boundary value problem (BVP):

G(x,y;x',0)=G(x,y;x")  in0sy<h

G(x,y;x,0)=G,(x,y;x) inbygy=<0 (1)

32 z
(W + W)G(x, y;x',0) = =278(x - x')8( ),

O<x,x'<a;b,sygh,

G1(09 Y x,) = GZ(O’ Vs xl) = Gl(a’ Vs xl) = GZ(a’ Vs xl)
=G2(X, bz; x,)

=G,(x,by;x")=0

(3)

G,(x,0*; x") =G,(x,07; x') 0<x,x'<a (4)

aG
61——1 =€y 0<x,x"<a.
3_}’ y=0" ay y=0"

With this definition of G the electrostatic potential of a
line charge ¢ (C/m) at (x',0) is Y (x, y) =qG /(€ + €,).
Also, in the absence of any shielding walls,

(5)

1
G=GP(x,y;x')=— Eln[(x—x’)2+ yz]; Y(x,y)

qln[(x—x')2+ y2] ©)
- 2r(e+ey)

The solution of BVP (1)-(5) will be obtained in three
forms, depending on the relative position of the field and
source points, their proximity to the shielding walls, and
whether the field point is near the separating surface y = 0.
Thus, as in [2}, in the next section we initially extract out
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of G the singular logarithmic term G? defined in (6) and
certain additional simple harmonic terms that help im-
prove the uniform convergence of the remaining nonsingu-
lar part of G. The latter is expanded into appropriate
harmonic series S\ and $® (j=1,2,3,4) pertaining to
regions 1 (0 < y < b;) and 2 (b, < y < 0), respectively, and
connected to each other through the boundary conditions
(3)-(5). These series exhibit an exponential rate of conver-
gence everywhere except in two special situations. The first
is when both the field and the source point are located
very near the shielding walls. In this case the influence of
the nearby image source terms becomes predominant and
destroys the convergence of the series S, S® [2], [3].
Extraction of corresponding logarithmic terms restores the
convergence of the remaining series expansions in the
second form of G thus obtained. This evaluation is carried
out in Section III. It is very useful whenever the strip
conductor approaches any of the four walls. The second
situation is when y = 0. Here, the field point les, also, on
the dielectric interface, a situation that comes up in the
formulation of a SIE for the shielded microstrip. As will be
seen—and has already been observed in other situations
[1]—the series S5 (k =1,2) in the first form of G (and
the corresponding ones in its second form) lose their
exponential rate of convergence, exhibiting a slow uniform
convergence of the order 1/m?, where m is the summation
index. This slows down considerably the evaluation of G
at such points and the solution of the SIE for microstrips.
Application of Watson’s transformation on S§* in a way
similar to [1] vields equivalent series that converge ex-
ponentially even when y = 0. This third form of G, devel-
oped in Section IV, improves drastically the solution of the
microstrip SIE [4]. The numerical results of Section V
illustrate the characteristics of the various forms of G
outlined above.

II. THE ORIGINAL (¢ FUNCTION

As outlined in the previous section and by analogy with
[2] we can write down for G the following expressions:

Gk(x? y;xl)=Gp(x9y;x’)+Gz(xay;xl)’ k=1,2

(7)

" which describe the solution of the imhomogeneous equa-

tion (2) in regions 1 and 2 in terms of its partial and
complementary solutions G? and Gf. The first, given in
(6), follows from the well-known electrostatic solution of a
line source ¢ at the point x’, y’ in a medium ¢, in y >0
separated from a medium €, in y £ 0 in the limit y’'=0;
at this limit G? gets the unified form (6) valid in both
y=0and y <0 and accounts fully for the singular behav-
ior of G near the source point. The complementary solu-
tion G§ is nonsingular throughout the region 0 < x < a,
b, < y £ b, and, as in [2], after extracting out of it certain
simple harmonic terms, may be expanded in four sine—sinh
Fourier series S{X(x, y) (j=1,2,3,4) in each region k =1
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and k=2
1
Gi(xi y.x) = 2 (a=2) (b= )
ab,
+x(b,— y)In(a—x’)

1
+ 5(a~x)yln(x’2+b,%)

1 N2 o
+5xyln[(a—x) +bk]}

4
+ Y sP(x,y), k=12 (8)
J=1
i . mux . may
ka)(x,y) = Z a{fn)sm sinh —— (9a)
m=1 a
& max  [mm
S (x, y) =Y aff)sin s1nh[—(bk—y)}
m=1 a
e may ~ mMuX
S{(x.y) = X afi)sin sinh (9¢)
m=1 bk bk
k d may | mm
S4$ )(Xa y):: Z a(k)sﬂl sinh —-—(a—x) . (Qd)
m=1 ‘ bk bk

The role of the extracted simple harmonic terms in (8)
may be appreciated when the boundary conditions (3)—(5)
are applied. For instance the third and fourth of the
conditions in (3), G (a, y;x")=0 (k=1,2), lead to the
relations

mwa  mm
S{Ma, y)= Z a$® sinh sin
m bk bk
1 kY
=—In{(a—x)+y?| - In(a—x")
S o I-=
~5%;—ln a—x)2+bk] yin[0,5,].
k
(10)

The series on the left represents the Fourier-sine expan-
sion of the simple function of y on the right, which
vanishes at the end points y = 0 and y = b, of the interval.
This fact improves the convergence of the series S{*(a, y)
and, as is soon to be seen, makes the convergence of
S{¥)(x, y) uniform, of the order at least 1/m?, ensuring a
convergence for the derivatives of G, (i.e., of the field) of
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order at least 1/m?2 Analogous conclusions can be drawn
for the series S{(x, y), S}¥)(x, y). The simple harmonic
terms act as smoothing functions improving the conver-
gence of the individual series, a property discussed further
in [1]-[3]. In addition, they do not complicate the applica-
tion of condition (4) at y = 0, as will be verified below.

The expansion coefficients a$*) follow from (10) and the
orthogonality of {sin(mwy/ bk)} in [0, b,]. The integra-
tions of the right-hand side are the same as those carried

T
alf) = — dm[—(— a+x)

out in [2] and yield
mwa
» /(mvr sinh b, ) (11)

d,(z) =Re{exp(mz)[ E\(mz —imm)— E\(mz)]
+exp(—mz)[ Ey(—mz —imn)— E;(—mz)] }
“d,(~3)

= sRe[/fzt = (<) (2~ im)

/12— im*] + 0(1/m?) (12)

E,(z) being the exponential integral function [11], whose

numerical evaluation and asymptotic behavior are dis-

cussed in [1]-[3] and [11]. Also, Z is the complex conjugate
of z.

In a similar way the remaining boundary conditions in

(3): G,(0, y; x)y = G,(x, by; x") = 0 provide relations from

which the coefficients af%), a{¥) are obtained as follows:

1 max’ ma|b,
a{k) = — —————{27sin exp| — izl
. m7b,
ma sinh ——
T
v, | 2= i) (13)
o a . mma
aff)=—d |- —b—x mar sinh 5| (14)
P X

The results of (11)—(14), which are identical to those in
[2] with y’=0, determine completely the series S, S;, S,
Their convergence follows from the behavior of their gen-
eral terms as m — oo and is the same as in the correspond-
ing series of [2] with y’= 0 (see also [3] and (12)). The final
results are

3

. max mmy 2 mm 2a* m
a{’/:l>s1n sinh —— <—exp[————(2lbk|—[y|) + = 3exp[—~—(]bk|—|y|)
a a m a m a
—x? bi—(a—x')’
| 2kTX s—(~1)" = (a=x) > +0(1/m) (152)
(b2 +x?) [b2+(a—x')]
marx 2h2 ma —x Y —p2
a$k) sin sinh 5| <753 p[‘lb—(a—x)] ———-—~(—) la=x) bk2+0(1/m)
k k kl (a_x) [(a_x,)2+b]%]
(15b)
Ty 2b3; mmx 1 2 p?
a$¥) sin 5 smh{—(a—x)} —k exp( ) . _2._(_1)”’____"_ +0(1/m)|. (15¢)
X m? 1By x' (x2+bi)
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The exponential rate of convergence is made obvious by
these relations and is further strengthened by the factors
1/m and 1/m?>. This rate is lost for the series S{* (or
S{©)y when x = a (or x =0) and for the series S{*’ when
|¥|=|b,|, but the convergence remains uniform, of the
order 1/m?>. Only when both x and x’ approach a (or 0),
i.e., when both the field and source points approach very
near the shielding wall x = a (or x = 0), the series S{*) (or
S{#)) fail to converge. This, as already mentioned, is due to
the strong influence of the nearby image source and can be
remedied by extracting out of G, further logarithmic terms,
a procedure carried out in Section III below.

It remains to determine the coefficients a$¥) (k =1,2) by
applying the last boundary conditions (4) and (5). Sub-
stituting (6)—(9) in (4) leads directly to

(16)

while invoking (5), the fact that [dG?/dy],_, =0 and the
orthogonality of {sin(mwx/a)} (m=1,2,---), we end up
with the relations

by
ofY) sinh = o) sinh

mmb;

1 .
a$h) sinh p,

mwb,

= af sinh
a

1

L2 Cyigan s g0

m

- X (-D'eef)

=1,2

2 8 (9™ E 0", Fear)

1=1,2 q=15
ax’ 1
—d, | —— 17
"( b, )} ma\2 (qu)2 (17)
LR
a b,
mwb marh
B, = ¢, coth L _ ¢, coth 2 (18)

€ €
g(x)=El-ln(x2+bf)—-2—;)—2~ln(x2+b§)
€ €
—|=-=1
ALl

where af? are given in (13).

Inspection of (17) reveals that the series S, defined in
(9b) exhibits an exponential convergence when the ob-
servation point is not near the dielectric interface. How-
ever, when y — 0, as. pointed out.previously, the general
term of S, loses its exponential decay, behaving asymptoti-
cally only as (—1)™/m?. This defect will be remedied in
Section IV by applying the transformation of Watson.

(19)
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In this section we have derived in effect a unified
expression for the G function of the structure in separated
form, characterized by a very rapid rate of convergence
everywhere except in the cases noted above.

III. THE SECOND FORM OF THE G FUNCTION

As discussed previously in connection with (15b), (15¢)
the series S,, S, fail to converge when x"=a or x'=0,
respectively. This is attributed to the influence of the
nearby image logarithmic source when the observation
point (x’,0) approaches the shielding walls, whose nearly
singular behavior destroys the convergence of the series.
This argument suggests, also, the way to remedy the situa-
tion by extracting out of G; further logarithmic terms,
corresponding to line sources at (2a — x’,0) and (— x",0):

] 2
Gi(x, y;x') = 5:1n[(x+x’—2a) 47
+ %ln [(x + x’)2+ y2]
. <(a —x)(b,— y)

b
‘In(2a - x)+x(b, — y)In(a+x")

1
+—2—(a—x)yln[(2a—x’)2+ b,%]

xy 2
+71n[(a+x) +b,%]>

4

7k =

+ 1Sj( Nx,y), k=1,2. (20)
i

The series S/(x,y) (j=1,2,3,4) are the same as
S®(x, y) in (9) with new coefficients a/{¥ in place of
(X(k).

ym

Applying the boundary conditions at x =a, x=0, y=
b, as before, we obtain first expressions for the coefficients
a/k for j=1,3,4:

o 1 . (mT
af, = T {-—2vrsm(—‘;—x)
mwsinh(—bk)
a

cexp( = b)) d (bt )|
+dm[g(—bk—~ix')]

+ dm[— Zhe - i%(x’-—2a)]} (21)

(k) 1 i ’ ’
A3 = ] wa Am b—(—a—x);
mar sinh | Yk
k
1 [ o
af,(,,’f)=——————. TG A b—(x’—i!a)]. (22)
mar sinh L Tk

k
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For large m use of (12) shows that the general term of
S/ (j=1,3,4) behaves as follows:

maax mw
)sinh( y)
a a

2 mm " ]
<;exp[——;—( 1Bl =11

7(k) o3
Qy,, s1n(

2a? mm
+ 5,3 oXp [“ 7(|bk|_ IYI)]
B2 —(x'—2a)’

: 2 (_1)m
[b,% +(x’—2a)2]

b2 —(x'+a)’

. +0(1/m) (23a)
[b,zc+(x’+ (1)2]2
mar marx
a'{®) sin( Y ) sinh( )
by by
2b} mm
< _—— J—
55 eXp ™ (a—x)
m (a+x)—b}
s = (~1) +0(1/m)
(a+x)° [(a—i—.x’)2+b,2c]2
(23b)
mmy ma
a’(,,’f)sin( )sinh[— a—x ”
i sin 22 s | 57 (0 x)
2b} mmx 1 1"
< —_— p— . p— ——
m’ e"p( bl ) | (x —2a) (~1)
(x'=2a)*- b2
> +0(1/m)|. (23¢)

[(x-20)+ 7]

Now, obviocusly, as x’ approaches either a or 0, the
series Sy, S/ continue to converge exponentially, in con-
trast to the preceding expansions S, S,, given in (9) and
(15). When the observation point approaches the shielding
walls (]y| =|b,]| for S{®, x =a for S{, and x =0 for S))
the exponential decay is lost, but the series converge
uniformly, at least as 1/m?>. In any case when (x, y)
approaches the shielding walls the result is known, G =0,
while when it moves very near (x’,0) the dominant loga-
rithmic terms of the expansions account for the rapid
change (singular behavior) of G; the remaining terms
(simple harmonic and series) represent small correction
and analytic terms which account for the influence on G of
the dielectric interface and the charge distribution on the
walls. When both x and x” are near a (or 0) and y is near
0, the two logarithmic terms (source and its nearby image)
of the second expansion account for the dominant behav-
ior of G, leaving the strong convergence of the series Sy or
S undisturbed. Let us add at this point that the technique
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of extracting out of G the image source has been applied
to scattering problems as well {12}, [13].

Finally, application of the boundary conditions (4),
(5) at y =0 provide, as previously, the coefficients a5%
(k=1,2):

m
oM sinh ( —Wb )
2m a 1

mm
- agonn( s,

m
a

L E(i)z[(—l)mg(a+x’)—g(2a—xl)]

B \a\mm

m

- Z (“1)[‘/‘11’%)

1=1,2
; % ,:Zl,z(_l)lz_[, qil{(—l)mdq[bz[(— a —x’)}
—dq[gl(x’—Za)}}
1

mm\2 [gqm\* (24)
—_— + R
( a ) ( b, )

It is concluded from (24) that the general term of
S;®)(x, y) decays exponentially as m ~> oo as long as the
observation point is not located near the dielectric inter-
face. However, when y =0 the rate of convergence of this
series is of the order (—1)™/m? The same behavior was
noticed previously for the series S{*)(x, y) defined by (9b)
and (17). By applying the method of Watson in the next

section a drastic improvement is achieved for both these
series.

1V. APPLICATION OF WATSON’S METHOD: THE
THIRD G EXPRESSION

A detailed examination of the expressions (9b) and (17)
for S{¥ and (24) for S;® reveals that the loss of the
exponential rate of convergence of these series as y — 0 is
due to terms of the form

(z1)”

Esinh[*a—(bk_)’)] ((71))”1 ),

a ] m
B, sinh ( ——bk)
a

(1=1,2)

appearing on the right-hand side of (17) and (24), respec-
tively, while the remaining terms of (17) and (24) decay
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" a)y At p=m (m=1,2,---) with a sum of residues

na/ b“ Z Resfk{lx}(“' = m) = S,;/'ﬂ'. (27)
A; Contour [ / Ao m=t
u b) At p=iga/|b)}(¢=1,2,- ) with residue
L ‘
qa/|b,| Res f{7 ) (p=iqa/|b/))
P1
1 2 m | m+1 / ——smh(qﬂx)
AL 1 K . by by
0 ab,sin(wqy/b,)8 5.4 -
p —pLane ! sinh[T(a~x)}
I
gmnsinn |72\ [a[ 22| - 252 o
Ay qm 0y b b, blq b, q

Fig. 2. Triangular contour I' for the application of Watson’s method. where 8 (x)=1 for x= integer, 8(x) =0 otherwise. The

correct evaluation of these residues requires special care
exponentially ‘with increasing m. So we concentrate on when (b, /b;)q is an integer.

series of the form For g = 0 the pole is located at p =0 with remdue
e om . (mTx\  [m7
I e e e e
“ m=1 mar\? qm 2 mmb, Res [T (p=0) = 6 . (29)
EREi Jo_e
a b, a \by by
k=1,2;1=1,2;4=0,1,2,--- (25)

c) At the roots of the transcendental equation
and seek ways to improve their convergence for small y.

To this end we may invoke the well-known Watson method th paby th pmby\| . h pby —0 (30)
[1}, [2]. As a first step in the application of this technique €0 T 600 S =0 (
we form the following contour integrals:

a

[ pmx
sm(—)
a

‘sin[‘%r(x ~ a)]

2] b b b
(WT) +(fl—z) }sin(m)[elcoth(ﬂ—w—l) — e2coth('u—-2)]sinh(“—~lﬁ)
a b, a a a

along the closed triangular contour I' in the u plane shown
in Fig. 2. The corners A.l, A; are symmetrical to A, with  yhich fall on the positive imaginary axis p = ip” (4> 0),
respect to the real and imaginary axes, respectively, the ¢ points p” =p, (>0) (n=1,2,---), It is shown in the
side 4,4, cuts-the real axs at p'=m+1/2, while 4,43 Appendix that all the zeros of (30) are purely imaginary.
cuts the imaginary axis at p”"=na /b, (n=1,2,---). When pe corresponding residues are
g =0 the integrand f{¥}(p) has a simple pole at p=20 _
and A,4; bypasses this point around a small cir- sinh x "
cumference of radius p. When ¢ =1,2,--- the pole inside b, " C[by—y
T is located at p = ip” =iga/|b,| and 4,4, passes straight x—a s — u,/
over p=0. sinh ( —b——u,’,’) !

Obviously f§¥!} is an odd function of p, so the ) 1

usly [/ (p) b Resfk{lx}(“:mn)___ L

sinh[-’;—”(bk—y)]

9ka1 }(M) dp = ¢

du (26)

integral over A,A; vanishes. It is further shown in the qm w\ e (b, ’
Appendix that for all p on 4,4, and 4,4, the integrand (7) - ( b_) ;Hn sin ( Z—u”l’)
4T} (p) vanishes as these sides recede, independently, to L\ 7 1 1

00, ie,as p'=m+1/2 -0 and as p” = na /b, — o0. This g=0,1,2,--- (31)
means that at these limits the sum of residues of all poles b b

of the integrand, enclosed in T, is 0. The poles and their H = sinh( a4 u”){ 9% €309 } (32)
corresponding residues in I' are as follows. " 1 sinu’” " sin*(u/b,/b,)
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with u, = (a /b, )u’, where the positive values u; are determined in the Appendix. It follows that the initial series Sy
divided by 7, can be expressed as the negative sum of the residue (28) when ¢ =1.2... (or half of the residue (29) when
g = 0) plus the infinite series of the residues (31). The whole new expressions for S{%) in (9b), (17) and S;© in (24). thus
obtained, are given below:

max ma y

" sin( )sinh[——*(bk~y)] 1=

S (xp) == X ‘ i Y (D e
m=1 Bmsinh(——bk) /=1.2 a a_&
a by, b,

: : . .

Jxgla—x)—(x—a)g(x)] =2b} ) sin 7(bk—_v) sinh b—u,’j gla—x')
n=1 1 1

+ si h(a-—x 7" ( ’ N2H : bk "

sin b ul )g x)|/ |u)H,sin b, u)
| mqy b, . Tgx x'—a

© sin '—b‘-‘ d 'b—q smh(T) dq ™ b

- Z (“1)151 Z ! d : !

(=1,2 g=1 . an) € bl ) €, bz V
ab,sinh| — || —8| —¢q |- —08| —
o ( b, {bl (b/q, b, \ b7
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TABLE I
x'=18; D = DOMINANT TeRM = — 1{In(x — x/)} + y?]
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(19 4
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TABLE I

_ Ga b & Cs D J
N 1 0.4520517  1.282328  3.699040 1,280485 j
10 0.7427881 1 282234 1 799159 1.281124 1.282475 |
2985 005 70 1.198505 1.281547 1 292053 1 281352 3
1 0.7758923 1416502  4.028069 1.414696
10 1001345 1.416429  2.063884 1.415284 1.416607
99 008 700 1333782 1415850  1.437069 1 415623
1 0.4065871  0.8046559  3.669789 0.8028990 |
10 0.5668899 0 8046034 1 637953 0.8034310  0.80471%0
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29.99 0 70 © 1591830 0 2006146 0 3041360 0.2001826
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In both S{X and S the slowly converging series over
m, when |y| is small or 0, are substituted by exponentially
converging series over n. Indeed, the dependence on y
appears now in sine instead of sinh functions, while
sinh(u//x /b;) and sinh(u)(a — x)/b;) in the numerator
are divided by sinh(u//a /b;), thus securing an exponential
decay of the series. Even the convergence rate of the series
over ¢ is now improved. On the interface, for y = 0, both
(33) and (34) are simplified considerably.

V. NUMERICAL RESULTS AND CONCLUSIONS

Four expressions for G (x, y; x") (k=1,2) have been
obtained. The first, denoted from here on as G,, is defined
in (7)—(9), (11)-(14), and (17) and converges rapidly when
the source point (x’,0) is not very near the shielding walls
x =0, a. The second, Gp, defined in (7), (9), (20)~(22), and
(24), takes into account the influence of the image sources
in closed form and converges rapidly even when x’ is near
0 or a. The third and fourth G,,Gj;, obtained via the
transformation of Watson, provide alternative and rapidly
converging series for the sums S{ and $;* of G, and
Gy, respectively, when the field point (x, y) is near the
interface y = 0. The remaining parts of G,, G, remain the
same in the expressions G,,G;. The equations defining
these new expressions for ${¥’ and $;%) are (33) and (34),
respectively.

In the following tables values of G from all four expres-
sions are given for various positions of the source and field
points. The geometry of the shielded line is kept the same
in all tables: @ =30, b, =16, b,=—8, ¢, =1, ¢,=10. In
Table 1 the source point is away from the walls, x’ =18,
while the field point moves around it. Apart from the four
values of G we provide in each case the approximate
number M of terms, used in the basic summations over m
(over n for the sums S{°, S/ in G,,G;), at which the
final value of G settles to the indicated accuracy, thus
providing a clear criterion of the rate of convergence. We
also provide the value of the dominant term D, in this case
D=—1In[(x—x")*+ p?], and its difference (the re-
mainder) from Gy This last value, remaining practically
constant for all values of (x, y) near (x’,0) brings to light
the dominant behavior of the singular term and the impor-
tance of extracting it out of G in closed form. In all cases
the clear superiority of the expansions G,, Gy over G,, Gg is
obvious, particularly, when the field point is close to the
interface (y = 0). Only for large y do the four expansions
become equivalent from the standpoint of the rate of
convergence.

In Table II the source point is placed near the wall
x=a, x’=29.9, while (x, y) moves near and around it.
Now as dominant for Gg, G, we consider the sum of terms
D= —!tln{(x - x)*+ y*]+3in[(x + x'—2a)* + y?] of
the source and its nearby image. The clear superiority of
Gg. G over G,, G, respectively, is again obvious as well as
the insignificant contribution of all terms beyond the two
dominant ones in the value of Gp,Gj. To show this we
provide three values of G in each case, corresponding to
the number of terms M kept in the main series summa-
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tions over m, as explained previously, namely, M =1, 10,
and 70. Even with M =1 (only the first term of the series)
Gg, Gy have settled to their final values within a three or
four digit accuracy. These values are of course very near
the dominant term. So, the remaining terms of the series
affect only a small residual part of Gg,Gj. It is interesting
to notice that as M increases G, and G; approach the
“final” value from above and below, respectively, being
always very close to it. On the contrary, G,, Gv start from
very different values and very stowly tend to the correct
value (from below and above, respectively), but it would
require very large values of M indeed to get an acceptable
approximation, certainly M > 70 for the example of Table
II. This is a further demonstration of the importance of
extracting out of G the dominant terms in closed form,
particularly for regions near or around singular points or
points of rapid change of the function.

Finally, we may state, that the best expression for G is
Gs. It is at least equivalent to the other three in all regions
with x’ away {from 0 and a and y away from 0 and
definitely better than the others when either y =0 or
x"= 0 or a. In particular, for microstrip problems in which
the strip comes close to the walls x =0 or a it has been
shown [4] that G is definitely superior.

APPENDIX

We start with the determination of the roots of the
transcendental equation (30). It is obvious that they do not
coincide with the roots of the factor sinh(uwb, /a) be-
cause these values reduce (30) to the impossible relation
te€,=0 (k=1.2). This, also, justifies passing the side
A, A5 of the contour T' through the point p” =na/b,

(n=1,2,---). Writing now
pab,/a=—Bu, B=-0b,/b;>0

(A1)

umh,/a=u

we turn to the roots of the other factor
D(u) =¢ cothu+e,coth(Bu)=0. (A2)

With u=u'+iu” and coth(u'+iu”)=(1+itanhu -
tan u”)/(tanh u’+ itan u’’), this relation reduces to

tanh u’(1+tan’ u”)
D(u) =¢

tanh” i’ + tan® u”’
tanh (Bu’)[1+tan® (Bu")]
" tanh® (Bu’) + tan? ( Bu”)
tan u”’(tanh® u’ ~ 1)
tanh® u’ + tan® u”’
tan?® (Bu’)[tanh? (Bu’) —1]
tanh® ( Bu’) +tan® (Bu”’)

Now tanhu’ and tanh(Bu’) have the same sign, since
B > 0; also, they both vary between —1 and 1. Thus the
real part of D(u)is zero only for u’= 0. Therefore, u = iu”
and either (A2) or (A3) reduces to

e cotu’” = —e,cot(Bu”).
|

+ile

(A3)

(A4)
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Fig. 3. The roots of the transcendental equation (Ad) for B =
—by/b,=1/3 and f=1/4.

Since D(u) is odd we are only interested in the positive
roots of (A4), which produce poles of f{!(p) inside T.
Such roots are easy to determine numerically to any de-
sired accuracy. In particular for 8= —b,/b,=p or 1/p,
where p is an integer, only the first p/2 (p even) or
(p —1)/2 (p odd) roots require numerical determination,
the rest following by adding multiples of #. For instance,
for B=p=1, (A4) can be satisfied only for cotu” =0,
ie, for w’'=Q2n-Dn/2 (n=12,---) or ' =p,=
(2n—1)a /2b,. For B =1/3, after determining numerically
the root u/’, there follows u} =37 /2, while u} =37 —u/".
The rest of the roots follow by adding multiples of 37 to
each of the first three, as illustrated in Fig. 3. On the same
figure the case B =1/4 is also illustrated; after determin-
ing numerically u], uf there follows uf{ =47 —uf, uy =
47 — u{’ and the remaining roots are obtained by adding
multiples of 47 to the first four. Similar simplifications for
the solution of (A2) can be found in the more general case
when B is the ratio of any two integers.

Finally, there remains to show that the integrand
747} (p) in (26) vanishes for all p on 4,4, and 4,4, as
these sides recede, independently, to co. Using the relation
1]

cosh2u’+cos2u”

cosh2u’ —cos2u’’

12
] (A5)

we deduce that, for all values of u”, lcothu|—>1 as u’' —
+ oo. Taking also into account that for k=1 both y >0
and b, — y 2 0, while for k =2 both y <0and b,~y <0,
it follows that as ' =m + 1 - + oo (with p on 4,4,):

|| )
|fk{lq: }(M) I#""~+oo [

)coth(u’+iu")l=[

(2w ewy [ 2] fare

{
HI:*:OO. (A6)

When u”" =na/b;— + oo (with g on A4,4,) we first ob-
serve from (A1) that u’=nm and tan u” = 0. Therefore
from (A3):

D(u) = ¢ cothu’'+e,coth(Bu’)B—ie,F (A7)
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where B, F are positive quantities. Again cothu’ and
coth(Bu’) have the same sign, since 8> 0, and [cothu'| =
1, lcoth(Bu’)| = 1. Tt follows that

: ) 1 1
|D(u)|>e¢,+e,B and 1/|D(u)|< ——=<—.
ete,B g
Therefore:
—w'n(l—x/a n
exp[{ B ,,Wx/g/ )}”lﬂl;M]
N < e —
W+ oo 2( s 2) gm\?
— gty | —
(a) [ I b, €
[J."_:‘?OOO' (AS)
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